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Brodmann’s area 5 has traditionally included the rostral bank of the
intraparietal sulcus (IPS) as well as posterior portions of the
postcentral gyrus and medial wall. However, different portions of
this large architectonic zone may serve different functions related
to reaching and grasping behaviors. The current study used
multiunit recording techniques in anesthetized macaque monkeys
to survey a large extent of the rostral bank of the IPS so that
hundreds of recording sites could be used to determine the
functional subdivisions and topographic organization of cortical
areas in this region. We identified a lateral area on the rostral IPS
that we term area 5L. Area 5L contains neurons with receptive
fields on mostly the shoulder, forelimb, and digits, with no apparent
representation of other body parts. Thus, there is a large
magnification of the forelimb. Receptive fields for neurons in this
region often contain multiple joints of the forelimb or multiple digits,
which results in imprecise topography or fractures in map
organization. Our results provide the first overall topographic map
of area 5L obtained in individual macaque monkeys and suggest
that this region is distinct from more medial portions of the IPS.

Keywords: area 2, area 5, medial intraparietal cortex, posterior parietal
cortex, primates

Introduction

Historically, there has been a great deal of contention over the

status of Brodmann’s area 5 (BA5) and how it should be

subdivided. Initially, area 5 was described architectonically as

a large wedge-shaped field caudal to area 2 in Old World

monkeys (Brodmann 1909). This field encompasses the rostral

or medial bank of the intraparietal sulcus (IPS) and extends onto

much of the caudal portion of the postcentral gyrus, especially in

the medial portion where area 5 is the widest. Medially, area 5

wraps onto the medial wall and borders the cingulate sulcus

(Fig. 1A). In Brodmann’s scheme, this large area 5 is bordered

rostrally by somatosensory area 2 and posteriorly by area 7.

Somewhat later architectonic schemes also defined this region

in the location of BA5 but termed this region the parietal area, PE

(e.g., von Economo 1929; von Bonin and Bailey 1947). Sub-

sequently, there have been numerous architectonic studies

utilizing both traditional and more modern histological techni-

ques (e.g., Hof and Morrison 1995) to further define this large

zone, and as a result both the extent and the boundaries of area

5/PE have been redefined and subdivided (e.g., PE, PEc, PEa,

Seltzer and Pandya 1986 or areas 5d and 5v, Lewis and Van Essen

2000; Fig. 1B,D; for abbreviations, see Table 1).

Studies using single unit electrophysiological recording

techniques to examine the functional properties of neurons in

BA5 are highly variable in both the location in which the

recordings were made as well as the neuronal properties

described. For example, in early single unit studies, most of

the rostral bank of the IPS and the caudal portion of the

postcentral gyrus was explored and considered to be area 5 (e.g.,

Sakata et al. 1973; Mountcastle et al. 1975), but the region

explored did not include the lateral most portion of the IPS nor

cortex on the medial wall (Fig. 2A,B). A number of subsequent

electrophysiological studies reported recording from sites in

area 5, but the location of the recording sites varied significantly

across studies (e.g., Ferraina and Bianchi 1994; Iwamura et al.

1994; Kalaska 1996; Taoka et al. 1998, 2000; Gardner, Babu,

Ghosh, et al. 2007; Gardner, Babu, Reitzen, et al. 2007; Chen et al.

2009; Fig. 2). Therefore, it is not surprising that the results and

interpretations of the function of area 5 varied as well. Although,

both architectonic and electrophysiological recording studies

have divided this large traditional area 5 (Figs 1 and 2), the

functional subdivisions do not appear to correspond well with

architectonic subdivisions. Despite differences across studies,

there is overwhelming evidence that areas in the IPS are

involved in complex hand use, reaching, grasping, matching

visual and body centered frames of references for reaching and

grasping, and programming intentional hand movements.

Lesions of posterior parietal cortex in humans provide insight

into the function of posterior parietal areas, and observations of

deficits are consistent with results from studies in nonhuman

primates. For example, lesions that incorporate cortex of the IPS

and inferior and superior parietal lobule result in Balint’s

syndrome, which is characterized by severe optic ataxias or

misreaching to visual targets as well as impaired spatial attention

or hemi neglect (for review, see Caminiti et al. 2010). Lesions in

humans that were limited to the medial bank of the IPS, which

may include both area 5L and MIP/PRR, result in distinct manual

deficits in visually guided goal-directed reaching (Trillenberg

et al. 2007), while visually guided saccades were not effected.

Interestingly, these patients can recover but have lingering

deficits in the kinematic aspects of a prehension task (e.g., Roy

et al. 2004), a function ascribed to area 5L (see Kalaska 1996).

Although posterior parietal cortex, including area 5, has been

clearly implicated in complex manual and visuomanual behavior,

the extent and gross topographic organization of this region has

yet to be fully characterized, as has been done in multiunit

mapping studies of somatosensory areas on the postcentral

gyrus, in the central sulcus (CS), and in the lateral sulcus

including areas 3a, 3b, 1, 2, S2, and PV (for review, see Krubitzer

and Disbrow 2008). While neurons in this large area 5 zone

respond best in awake and behaving animals, these types of

preparations are not optimal for collecting data from a large

extent of cortex where hundreds of densely spaced recording

sites can be used to determine the extent and gross organization

of a field in individual animals. Despite this problem, over the
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past decade, we took advantage of favorable conditions in

anesthetized monkey experiments that formed parts of other

studies in our laboratory to examine the receptive field

characteristics and topographic organization of lateral portions

of BA5, which we term area 5L.

Our goals were to explore the rostral bank of the IPS to

examine the representation of somatic receptors (mechano-

sensory and proprioceptors), to determine whether the

representation is complete and includes all portions of the

body, and to describe the degree to which the hand and

forelimb are magnified in this field. Using multiunit recording

techniques has allowed us to reconstruct comprehensive

functional maps of cortical areas that include regions within

the traditionally defined BA5 and the adjacent area 2.

Materials and Methods

Multiunit microelectrode recording techniques combined with archi-

tectonic analysis were used to identify the location, boundaries, and

topographic organization of BA5. Seven adult macaque monkeys

(Macaca mulatta) weighing 8.3--14.0 kg were used. All experimental

protocols conformed to National Institutes of Health guidelines and

were approved by the Animal Use and Care Administrative Advisory

Committee of the University of California, Davis.

Surgical Procedures
Aseptic surgical techniques were used in all terminal electrophysio-

logical experiments. Each animal was initially anesthetized with

ketamine hydrochloride (10 mg/kg, IM), and once anesthetized, the

animal was intubated and cannulated and a surgical level of anesthesia

was maintained with the inhalation anesthetic, isoflurane (1.2--2.0%, in

1 L/min O2). Fluid levels were maintained with a continuous drip of

lactated Ringer’s (LS) solution alternated with LS + 2.5% dextrose (10

mL/kg/min, IV). Once anesthetized, the skin was cut, the temporal

muscle was retracted, and a craniotomy was performed over the

anterior parietal cortex and the posterior frontal cortex, exposing the

precentral and postcentral gyri as well as the CS and IPS. Figure 2K

shows the location of the mapped areas in relation to the CS and IPS.

Next, a well was built around the skull opening and filled with silicon

fluid (Dow Corning 200 fluid (dimethylpolysiloxane); Dow Corning,

Midland, MI) to maintain cortical temperature and prevent desiccation.

Throughout the recording experiment, heart rate, body temperature,

blood oxygenation levels, and fluid levels were monitored and

maintained and in one case (01--45), the animal was ventilated.

Electrophysiological Recordings
A digital image of the exposed cortex was taken with a Pixera PVC100C

digital camera (Pixera, Los Gatos, CA) or CoolPix 5700 (Nikon, Melville,

NY) so that electrode penetration sites, lesions, and probes could be

related to blood vessel patterns. The recording electrode (low-

impedance tungsten-in-varnish microelectrodes, 5 MX at 100 Hz;
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Figure 1. Architectonic parcellation of the IPS by different studies. The first scheme was proposed by Brodmann (A) and subsequent schemes with differing terminology were
proposed by different investigators (B--D). In some modern parcellation schemes, BA5 has been subdivided into at least 2 fields. For abbreviations, see Table 1.
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30 lm tip diameter) was placed perpendicular to the cortical surface

and a hydraulic microdrive (Kopf Instruments, Tujunga, CA) was used

to lower the electrode into the cortex, including the depths of the CS

and IPS. The neural response was amplified, filtered, and monitored

through a loudspeaker and on an oscilloscope. For recordings on the

surface of cortex, electrodes were lowered 700--1000 lm below the

pial surface. For recordings in the sulci, the electrode was positioned so

that it ran parallel to the pial surface through layer IV and was advanced

in increments of 500 lm. Once the electrode was in place, the body

surface was stimulated and the receptive fields for neurons at that

cortical site were drawn on diagrams of the monkey’s body.

Cutaneous stimulation consisted of light displacements of the skin

with a fine probe and light brushing of hairs and skin. Light to moderate

taps, digit and limb manipulation, and light pressure, categorized as

‘‘deep stimulation,’’ were used to stimulate the muscles, joints, and skin.

In all animals, the contralateral and ipsilateral body surface, joints, and

musculature were stimulated. Full field flashes of light were used to

determine if neurons responded to visual stimulation. Selected

recording sites in these experiments were marked by coating the

recording electrode with a 10% solution of diamidino yellow (DY;

Sigma, St Louis, MO) and then reinserting the electrode into the cortex

at sites either on the surface of the cortex or into the depths of the CS

or IPS. This method allowed us to readily identify selected electrode

penetrations, determine electrode angle for the penetrations into the

banks of sulci, and relate recording sites to histologically processed

tissue (see Padberg et al. 2009).

Histological Processing
Following the completion of the recording experiment, the monkey

was transcardially perfused with 0.9% saline in 0.1 M phosphate buffer

(PB), followed by 4% paraformaldehyde in PB (pH 7.4), and then 4%

paraformaldehyde in 10% sucrose PB. The brain was then extracted and

postfixed in 30% sucrose PB overnight. In 4 cases, the brain was left

intact and sectioned horizontally so that laminar distinctions of cortical

fields could be appreciated. In the remaining 3 cases, the corpus

callosum was transected and the cortex was peeled away from the basal

ganglia and diencephalon; sulci were gently opened and the gyri

flattened. The entire cerebral hemisphere was flattened between

a lightly weighted glass slide and a large glass Petri dish filled with 4%

paraformaldehyde in 30% sucrose PB. These cortices were then

sectioned tangentially.

After fixation and cryoprotection, flattened cortices and whole brains

were frozen on a sliding microtome stage. Flattened cortices were

sliced tangential to the pial surface into 50-lm sections, and whole

brains were sliced in the horizontal plane into 60- to 80-lm sections.

For the horizontally sectioned tissue, alternate sections were stained

for Nissl substance (Fig. 3B--D) or cytochrome oxidase reactivity

(Carroll and Wong-Riley 1984). Flattened cortices were stained for

myelin using the Gallyas (1979) method to reveal cortical architecture

(Fig. 3E,F).

Data Analysis
Functional electrophysiological maps of the brain were generated by

analyzing receptive field positions and stimulus preferences at all sites

and drawing interpolated boundaries between different body part

representations. Recording sites that had neurons with the same

receptive field were grouped together and lines were drawn between

these recording sites and those that had neurons with different

receptive fields. In some instances, if 1 or 2 unresponsive sites fell

within a larger zone of responsive sites with similar receptive fields,

they were incorporated within this larger zone and marked with an X

to keep the maps from getting too congested.

The angle of our electrode penetrations on the banks of the CS and

IPS was determined from electrode tracks and the DY probes on Nissl-

stained and/or myelin-stained sections (Fig. 3E,F, arrows). We next

determined the architectonic boundaries of areas 3b, 1, 2, and the

lateral and middle portion of BA5. In flattened cortical tissue stained for

myelin, architectonic boundaries were drawn based on the density of

myelination. The entire series of sections was used to determine

cortical boundaries since most often all cortical field boundaries could

not be determined from a single section. In addition, the outline of the

section, blood vessels, tissue artifacts, fiducial probes, and electrode

angles were also drawn. By aligning these landmarks, architectonic

boundaries throughout the entire depth of the cortex were obtained.

This architectonic reconstruction was directly related to the electro-

physiological recordings by aligning the probes drawn on the picture of

the brain with those found in the histologically processed tissue. In this

Table 1
List of abbreviations

Cortical areas
3b Primary somatosensory area (S1; anterior parietal cortex)
1 Cutaneous representation caudal to 3b (anterior parietal cortex)
2 Representation of deep receptors caudal to area 1 (anterior parietal cortex)
5 (BA5) Posterior parietal area 5 (Brodmann’s area 5)
5d Dorsal subdivision of posterior parietal area 5 (on the rostral SPL)
5v Ventral subdivision of posterior parietal area 5 (in rostral bank of the IPS)
5L Lateral division of area 5.
7 Posterior parietal area in caudal bank of IPS—contains several subdivisions
AIP Anterior intraparietal area
CIP Caudal intraparietal area
IPd Intraparietal area (in depth of IPS, adjacent to POa and PEa)
LIP Lateral intraparietal area
LIPd Lateral intraparietal area (dorsal division)
LIPv lateral intraparietal area (ventral division)
MDP Medial dorsal parietal area
MIP Medial intraparietal area (posterior parietal cortex)
PIP Posterior intraparietal area
PE Superior parietal lobule area
PEa Superior parietal lobule area (anterior portion, in upper bank of IPS)
PEc Superior parietal lobule area (caudal portion)
PF Rostral inferior parietal lobule area
PFG Rostral inferior lobule area (transitional area between PF and PG)
PG Rostral inferior parietal lobule area
PGm Rostral inferior lobule area (medial portion)
PO Parietal occipital area (V6þV6a)
POa Parietal occipital area (anterior portion)
PRR Parietal reach region (posterior parietal cortex)
SPL Superior parietal lobule
VIPd Ventral intraparietal area (dorsal division)
VIPl Ventral intraparietal area (lateral division)
VIPm Ventral intraparietal area (medial division)
VIPv Ventral intraparietal area (ventral division)
V6 Posterior parietal area of the IPS
V6A Dorsal portion of area V6

Sulci
CS Central sulcus
IPS Intraparietal sulcus
LS Lateral sulcus
PCS Postcentral sulcus

Body parts
cn Chin
D Digit (individual)
d; di Digits
el Elbow
fa Forearm
fl Forelimb
ft Foot
h; ha Hand
hl Hindlimb
htp Hypothenar pad
kn Knuckle
tr Trunk
occ Occiput
pr fl Proximal forelimb
P/p Pads
sh Shoulder
sn Snout
tp Thenar pad
tr Trunk
ul Upper lip
vis Visual
wr Wrist

Anatomical directions
dis; dist Distal
dor Dorsal
low Lower
mid Middle
r Rostral
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way, a single comprehensive reconstruction of the architectonic

boundaries relative to the electrophysiological recording sites was

made. In the horizontally sectioned tissue, we used a camera lucida to

draw architectonic boundaries from the series of tissue stained for

myelin and Nissl. These drawings included the outline of the section,

blood vessels, tissue artifacts, fiducial probes, and electrode tracks. By

aligning the series of sections using the fiducial probes, a cortical

surface reconstruction could be made and aligned with the photograph

of electrode penetrations. As before, this allowed us to produce

a comprehensive reconstruction that included architectonic bound-

aries, sulcal landmarks, surface electrode penetrations, and the entire

extent and angle of electrode penetrations made into the CS and IPS.

Digital images were made with a Nikon Copy Camera (Tokyo, Japan)

with a Phase One PowerPhase FX+ (Global Manufacturing, Louisville,

CO) digital back. The digital image was taken using PowerPhase FX

Image Capture software (Global Manufacturing, Louisville, CO). The

image was cropped and put into grayscale using Adobe Photoshop

(Adobe Systems Incorporated, San Jose, CA). Final drawings and digital

images were generated and assembled using Adobe Photoshop and

Illustrator software packages (Adobe Systems Incorporated, San Jose,

CA). Measurements of area 5L were made using the debugger palette in

Adobe Illustrator CS2. MIP was not included in our measurements.

The total number of recording sites was determined for each cortical

field in each animal and the proportion of recording sites in which

neurons responded to a particular submodality (i.e., responsive to

cutaneous stimuli, responsive to deep stimuli) was calculated using

analysis of variance (Excel, Microsoft, Redmond, WA). Planned

comparisons (2-sample t-tests assuming equal variances) were then

performed to assess differences between cortical fields. For all analyses,

a < 0.05.
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Figure 2. The location of recording sites in different portions of BA5 in different studies. Some studies were in a middle portion of BA5 (A--C,G,I), some studies recorded from
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Results

Multiunit electrophysiological recordings were made at multi-

ple densely spaced (500 lm apart) sites in and around the IPS

(Figs 5 and 6) in each of 6 macaque monkeys so that the overall

topographic organization of area 5L, and the adjacent hand

representation of area 2, could be determined and directly

related to histologically processed tissue. In one additional

case, recordings were made in cortex medial to area 5L in the

IPS. In the following results, we first describe the cyto- and

myeloarchitectonic appearance of areas 2, 5L, and the medial

IPS region in both horizontally and tangentially sectioned

neocortex, respectively. We then describe electrophysiological

recording and the organization of receptive fields in areas 2, 5L,

and the medial IPS region.

Cyto - and Myeloarchitecture of Areas 2, 5L, and the
Medial IPS Region

In 3 cases, cortex was flattened and cut parallel to the pial

surface and in 4 cases, the cortex was sectioned horizontally.

Myelin staining in flattened cortex allowed us to appreciate the

entire extent of each field and the spatial relationship of each

field to other fields as well as the angle of our recording

Figure 3. A dorsolateral drawing of the brain (A) showing the locations from which sections B--D were taken (gray bars). (B) High-powered images of cortex sectioned
horizontally and stained for Nissl allow for a direct comparison of the laminar organization of areas 2, area 5L, and the presumptive area MIP. (C) The area 2 and presumptive MIP
border are characterized by a dramatic decrease in cell density of layers IV and VI in MIP? as well as a thickening of these layers. (D) The area 2/5L boundary is characterized by
a slight decrease in density and a thickening of layers IV and VI. These differences are not as distinct as those between the borders of area 2 and MIP?. In the flattened
preparations that have been stained for myelin (E and F) some of the borders of areas 5L and MIP are visible. However, the entire series of sections is used to determine all of the
boundaries of these fields. This type of preparation allows much of the length of individual recording tracks within the IPS to be readily appreciated (black arrows). Cortical field
boundaries are marked by an arrow in C and D and with a dashed line in E and F. Photomicrographs were taken from cases 01-45 (F); 03-141 (D); 04-51 (B: area 2); 04-53 (B:
MIP? and C); 05-82 (E); 05-116 (B: area 5L). Conventions as in previous figures.
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electrodes into the sulci (Fig. 3E,F, black arrows). In this

preparation, area 5L can be readily observed as a moderately

myelinated field in the rostral bank of the IPS. In cortex that

was horizontally sectioned and stained for Nissl substance, area

5L can be distinguished by relatively thick and moderately

staining layers IV and VI (Fig. 3B,D). Area 5L’s ventral boundary

in the depths of the IPS is distinguished from the neighboring

regions of cortex by a thinning of these 2 layers. Its boundary

with area 2 is less distinct since in area 2 layers IV and VI are

also thick and darkly staining. However, in area 2, these layers

are slightly more dense and somewhat thinner than in area 5L.

In area 2, layers IV and VI are more darkly staining and

somewhat thicker than similar layers in the rostrally adjacent

area 1 (also see Pons et al. 1985b). In tangentially sectioned

tissue stained for myelin, area 2 is moderately myelinated

compared with the more darkly myelinated area 1 located

rostrally. Because area 5L is also moderately myelinated, it is

sometimes difficult to distinguish the area 2/5L border in this

preparation. The myelo- and cytoarchitecture of anterior

parietal areas 3a and 3b have been well described in macaque

monkeys in previous studies in our own laboratory (Krubitzer

et al. 2004) and other laboratories (e.g., Nelson et al. 1980;

Darian-Smith and Darian-Smith 1993). Using combined archi-

tectonic data and electrophysiological recordings the bound-

aries of area 5L were drawn and its areal extent was measured.

The measurements revealed that area 5L has a mean area of

50.6 mm2 (standard deviation = 9.9 mm2).

Cortex just medial to area 5 was architectonically distinct

from both areas 2 and 5. This region which we term the

presumptive area MIP (MIP?) differed from the rostrally located

area 2 by a decrease in density in layers IV and VI (especially

layer VI) and a thickening of these layers (Fig. 3B,C). Its

cytoarchitectonic appearance differed from area 5L by a de-

crease in cell density and broadening of layer VI. In cortex

flattened and stained for myelin, this medial IPS region could be

seen as a moderately myelinated field compared with area 2

and was slightly more densely myelinated than area 5 (Fig. 3F).

Electrophysiological Recording Results

In all cases, multiple recording sites were made in the caudal

bank of the CS on the postcentral gyrus and in the rostral bank

of the IPS (see Supplementary Fig s1 and 2). Table 2 provides

the overall number of responsive and unresponsive recording

sites in areas 2 and 5L for each case. Our overall goal was to

examine the complete organization of area 5L. To accomplish

this, we distinguished area 5L from surrounding cortical areas

using both architectonic analysis (see above) and functional

criteria. Thus, cortex adjacent to the rostral, lateral, caudal, and

medial borders of area 5L were also examined when possible.

Area 2 is located rostrally to area 5L and complete maps of this

area have been generated in previous studies (e.g., Pons et al.

1985b). Thus, we did not attempt to explore area 2 in its

entirety but recorded only from the portions of area 2 that

were adjacent to area 5L, which includes the hand represen-

tation, a small part of the face representation, and a part of the

forelimb representation. In the following sections, we describe

several outstanding features of our results.

Submodality of Response in Areas 2 and 5L

Cortical area 2 is located on the caudal half of the postcentral

gyrus and cortical area 5L is located mostly within the rostral

bank of the lateral IPS. Although area 5 neurons respond

maximally when the animal is awake rather than anesthetized

(Mountcastle et al. 1975), in most cases, we were able to drive

neurons while using isoflurane anesthesia. However, in these

experiments relatively more sites in area 5 were unresponsive

to any form of stimulation than in area 2 (see Table 2).

The submodality of response, that is whether neurons

responded to cutaneous or noncutaneous stimulation, changed

significantly across the areas examined in this study (cutaneous

responses: F3,19 = 44.3, P < 0.0001; noncutaneous responses:

F3,19 = 48.2, P < 0.0001). Furthermore, neurons in area 5L

responded significantly more to stimulation of muscles and

joints than neurons in area 3b, 1, and 2 (t9 = –10.9, P < 0.0001;

t10 = –16.3, P < 0.0001; t10 = –3.4, P < 0.005, respectively).

Likewise, neurons in area 5L responded significantly less to

cutaneous stimulation than neurons in area 3b, 1, and 2 (t9 =
9.9, P < 0.0001; t10 = 14.0, P < 0.0001; t10 = 3.2, P < 0.05,

respectively). In area 5L, 90% of the sites that responded to

sensory stimulation contained neurons that responded to joint

manipulation and muscle palpation (Figs 4--6) and 10% of the

sites contained neurons that responded to cutaneous stimula-

tion and these differences were significant. About 4% of the

recording sites also contained neurons that responded to visual

stimulation and neurons in 2% of the sites had bilateral

receptive fields.

In area 2, the proportionality of response changed dramat-

ically with 58% of responsive recording sites containing

neurons that respond to joint manipulation, muscle palpation,

and taps to a body part and 42% of the responsive sites

containing neurons that responded to cutaneous stimulation.

Neurons in area 2 responded significantly less to cutaneous

stimulation than neurons within area 3b (t10 = 4.5, P < 0.001)

and area 1 (t10 = 5.8, P < 0.001) but significantly more than

neurons in area 5L (t10 = 3.2, P < 0.05). Likewise, neurons in

area 2 responded significantly more to stimulation of joints and

muscles than neurons within area 3b (t10 = 4.5, P < 0.001) and

area 1 (t10 = 16.3, P < 0.0001) but significantly less than

neurons in area 5L (t10 = –3.4, P < 0.005) (Fig. 4). However, the

responses of neurons in area 2 to cutaneous and deep

stimulation did not significantly differ (t10 = –1.4, P = 0.09).

About 2% of neurons in area 2 responded to visual stimulation,

while none of the sites contained neurons with bilateral

receptive fields.

The organization of areas 3b and 1 has been well

documented in a number of New and Old World monkeys

Table 2
Number and distribution of recording sites

Case Area 2 Area 5L Total sites

R UR R UR

03--117 49 6 28 37 120
03--141 50 6 90 31 177
04--51 45 3 61 16 125
05--82 56 0 75 11 142
05--116 56 16 40 21 133
07--64 53 5 24 32 114
Total 309 36 318 148 811

Case Area 2 MIP? Total sites

R UR R UR
01--45 30 1 67 25 123

Note: R, responsive sites; UR, unresponsive sites.
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(for review, see Krubitzer and Disbrow 2008) and will not be

described in detail here. However, a feature that distinguished

these areas from areas 2 and 5L was the proportion of neurons

that responded to cutaneous stimulation. As in previous

studies, we observed that the vast majority of neurons on the

caudal bank of the CS (91%) and on the rostral portion of the

postcentral gyrus (95%) preferentially responded to cutaneous

stimulation over deep stimulation (Fig. 4). Neither area 3b nor

1 contained neurons that had bilateral receptive fields or

responded to visual stimulation.

Topographic Organization and Receptive Field
Configuration of Areas 2 and 5L

The topographic organization of area 2 has been previously

described in macaque monkeys (e.g., Pons et al. 1985a, 1985b;

Padberg et al. 2010) and our results are similar to these

previous studies (Figs 5 and 6). Figures 5 and 6 show detailed

reconstructions of the cortical maps in areas 5L and 2 and

Figure 7 shows receptive fields for selected recording sites in

area 5L. In all cases, even those in which fewer recording sites

were obtained within area 2, the forelimb, hand, and face were

represented in an orderly fashion from medial to lateral. Within

the hand representation, digit 1 was represented in the most

lateral location, digit 2 was represented medial to this, and digits

3--5 were often represented in various combinations medial to

the D2 representation. The location of the representation of

the pads varied and was sometimes located rostral to the digit

representations (e.g., Fig. 5B,C) and sometimes located both

rostral and caudal to the digit representations (e.g., Fig. 5A).

Finally, the representation of the dorsal hand and digits were

found in islands within the digit representation (Figs 5C and 6C).

We observed relatively contiguous representations of major

hand or digit parts, and re-representation of the same body part

in area 2 were rare. Our partial maps of area 2 are very similar to

the full maps generated by Pons et al. (1985a, 1985b) in that the

pad representation was in variable locations in different cases,

and there was often a grouping together of digits 3--5, rather

than single digit representation as in areas 3b and 1 (for review,

see Fig. 9).

It was more difficult to generate maps for area 5L for 4

reasons. The first is that in several cases, we could not elicit

responses from neurons at all sites in area 5L (Table 2). Second,

similar body parts were often represented multiple times in

noncontiguous locations. However, we were able to establish

a general topographic order for area 5L with the proximal

forelimb represented medially and the hand and digits

represented more laterally (Figs 5 and 6). The third is that

multiple hand parts were often represented at a single site so

that drawing lines that interpolated different hand parts was

not as straight forward as for area 2. For example, rather than

encompassing 1 or 2 digits or a small portion of the palm,

receptive fields for neurons in area 5L often encompassed

multiple digits, digits plus the palm or a larger portion of the

palm. Also, receptive fields were sometimes located on 2 or 3

different body parts like the knuckles, elbow, and shoulder

(e.g., Fig. 7A). Finally, compared with area 2, in area 5L, the

representations of the different parts of the forelimb were

more variable (compare maps in Figs 5 and 6). While the

presence of some unresponsive pockets could contribute to

the disorderly representation in area 5L it is unlikely that this

would explain a fractured organization in all cases, since several

of the cases (e.g., Fig. 5A,C and Table 2) had relatively few

unresponsive regions and the maps in these cases were still

fractured.

Neurons in area 5L responded predominantly to stimulation

of muscles and joints, and representations of cutaneous

receptors were only noted in a small number of sites in a few

cases (Fig. 4A, open circles in Figs 5B and 6A,B). Most neurons

in area 5L had receptive fields on the contralateral side of the

body, but bilateral receptive fields were identified in 3 cases

(Figs 5A,B and 6C, gray squares; Fig. 7B, receptive fields a and

b). Finally, responses to visual stimulation were observed at

a few sites in 3 cases (Figs 5A,B and 6C, gray circles). In many

instances, flexing the digits, knuckles and/or wrist, or rotating

a joint elicited a good response, compared with taps, as in area

2. Furthermore, in several instances, movement of the

knuckles, wrist, and elbow elicited a neuronal response within

a single recording site (e.g., Figs 5A, 6C, and 7). The most

striking feature of area 5L was the magnification of the forelimb

and hand and apparent lack of any other body part represen-

tation (for summary, see Fig. 9).

Although a clear reversal in receptive field progression was

not observed across the area 2/5L boundary, there were several

features of representation and receptive field size and

configuration that helped distinguish area 5L from area 2

(illustrated in Figs 4--6). For example, we compared the spatial
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Figure 5. Maps of area 5L and portions of area 2 generated from electrophysiological recordings in the 3 cases (A. 05-82, B. 03-141, and C. 04-51). In these cases, most of the
neurons in area 5 were responsive to stimulation of deep receptors of the skin, muscle, and joints (closed circles). In 2 cases, there were a few sites in which neurons responded
to visual stimulation (A and B; gray circles) and in 2 cases, neurons had bilateral receptive fields (A and B; gray squares). The topographic organization of area 2 could be readily
discerned, but in area 5L, the same body part was represented multiple times and was encompassed in different receptive field configurations. Furthermore, only the forelimb,
and not the head or trunk, was represented in area 5L. Also, there was a greater degree of variability in map organization between individual cases in area 5L compared with area
2. The representations of digits 1 (blue) and 2 (yellow) are highlighted so that direct comparisons can be made between areas 2 and 5L. Area 2 has distinct individual
representation of both D1 and D2 while this is variable in area 5L. Most often these digits are represented with other digits rather than individually in area 5L. Thick solid and
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extent of body part representations that incorporated the same

body parts (Figs 5 and 6, yellow and blue regions). In area 2,

there is a single contiguous representation of D1 and D2 (with

one exception), while digits 3--5 are often (but not always

represented together in various combinations). In area 5L, the

individual representations of D1 were observed once or twice

in various locations and in one case, D2 was represented in 2

locations. Most often these digits were represented multiple

times at noncontinuous locations, with neurons in each of

these locations having receptive fields on the same body part

and often other body parts. These multiple representations of

a body part, often conjoined with other limb or hand

representations, and produced a fractured map in area 5L,

much like that reported for motor cortex (e.g., Gould et al.

1986; Stepniewska et al. 1993; Wu et al. 2000; Remple et al.

2006).

Cortex Medial to Area 5L

In one case, we explored the medial portion of the rostral bank

of the IPS (Fig. 8). This region was bordered rostrally by the

shoulder, trunk, and hindlimb representation in area 2 and

neurons in this medial IPS region were responsive to stimulation

of skin, muscle, and joints. While most of the receptive fields for

neurons in this region were on the contralateral body, 8% of

recording sites had neurons with receptive fields on the

ipsilateral body and/or bilateral receptive fields. Furthermore,

unlike areas 2 and 5L, 63% of the sites contained neurons

responsive to visual stimulation either alone or in combination

with somatic stimulation (Fig. 4B). Although the representation

of the body was fractured and there were sites in which neurons

were unresponsive to any type of stimulation, therewas a general

topography in this region with the hindlimb represented far
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Figure 7. Examples of receptive field composition for neurons in area 5L from 4 cases (A--D). These examples demonstrate that receptive fields were complex and often involved
several different portions of the forelimb such as the knuckles, wrist, and elbow (A) or elbow and shoulder (B; bottom figure). In some cases, neurons had bilateral receptive fields
(B; top figure). Multiple digits were often encompassed in a receptive field (C) or relatively large portions of the palm were represented (D). Neurons at all of these sites
responded to manipulation of the joints and muscles or taps to portions of the skin. The small insets below each case number illustrate portions of area 2 and area 5L and the
location of the recording sites within area 5L that correspond to the receptive fields drawn for each case.
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medially, followed by the representation of the trunk and

forelimb and hand and digits (Fig. 8A,B). Lateral to the hand

and digit representation we found additional representations of

the proximal forelimb. While we did identify a hindlimb

representation, it was small and incorporated only 2 recording

sites (Fig. 8). The location of this medial region is similar to that

described in previous studies of MIP (e.g., Colby and Duhamel

1991, 1996; Eskandar and Assad 2002; Mullette-Gillman et al.

2005, Klam and Graf 2006; Durand et al. 2007; for review, see

Grefkes andFink, 2005). Thus,we term this field thepresumptive

MIP (MIP?).

Comparisons of Area 2, Area 5L, and the Medial IPS
Region

There were several features of the functional organization of

area 5L that differed from area 2, and along with comparisons of

cortical architecture, allowed us to readily distinguish one field

from the other. The first distinguishing feature of area 5L was

that we found no representation of the lower body or face.

Instead, the forelimb and especially the hand representations

were greatly magnified compared with area 2 and other anterior

parietal fields. Second, while the overall topographic organiza-

tion of area 2 is a relatively simple somatotopic representation of

proprioceptors and mechanosensory receptors of the contralat-

eral body, area 5L has multiple representations of the same body

parts at disparate locations, which leads to a fractured and more

complex map (Fig. 9). Finally, the differences in body part

representations within area 2 in individual animals (and studies)

are less pronounced across cases compared with area 5L. For

example, with some differences in location of the palm, the

relative location, contiguity, and size of each body part

representation are consistent across cases within area 2.
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Compared with that of area 2 or anterior parietal areas 3b and 1,

in area 5L, there were more individual differences across cases in

terms of location, contiguity, and relative size of different hand

part representations.

Although there is only one case in which the anesthetic level

was favorable and allowed us to record from neurons in

a location medial to area 5L, the location, functional organiza-

tion, architecture, and neural properties of this field indicate

that it may be different than area 5L, and previous single unit

electrophysiological recording studies indicate that it is

a separate field (see Discussion). This medial region contains

small hindlimb and trunk representations and a larger repre-

sentation of portions of the forelimb. Also, many neurons in this

region are responsive to visual stimulation and there are often

islands of neurons that only respond to visual stimulation.

Discussion

This study provides the first full description of the topographic

organization of the lateral portion of the IPS, traditionally

incorporated in the larger architectonically defined area 5, and

distinguishes the laterally located 5L from more medial locations

that have been previously described (e.g., MIP; Colby and

Duhamel 1991, 1996). Furthermore, this is the first demonstra-

tion of a large magnification of the forelimb and hand for any

parietal area, with no apparent representation of other body
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parts. Thus, the rules for simple topographic mapping of the

entire contralateral sensory epithelium as seen in anterior

parietal fields are not observed in areas of posterior parietal

cortex, suggesting that other organizational principles are in-

volved in functional map construction in these areas (Fig. 9). Fi-

nally, we demonstrate that the maps in area 5L + the presumptive

MIP are not strictly topographic but fractured, more like motor

cortical areas than the simple maps of the body in early stages

of somatosensory processing in anterior parietal fields.

The methods for subdividing different regions of the neo-

cortex have been described previously (e.g., Kaas 1982;

Krubitzer 2009). Several criteria are used to subdivide a cortical

field including topographic organization, neural response

properties, stimulus preferences, architectonic appearance, and

neuroanatomical connections. Posterior parietal areas have also

been subdivided based on the various actions that they are

associated with. While each criterion is important, when used in

isolation it may not be sufficient to distinguish a field. For

example, the use of single unit recordings alone to examine

neural response properties without the use of cortical architec-

ture or other criteria may not distinguish one field from another

if the adjacent field has similar or overlapping neural character-

istics. Furthermore, the use of cortical architecture alone can be

misleading since different functional fields may have a similar

architectonic appearance, and often similar architectonic

methods generate different results in different laboratories

(e.g., Fig. 1). Thus, the use of multiple criteria such as

electrophysiological results in conjunction with cortical archi-

tecture and neuroanatomical connections are usually the best

way to distinguish cortical fields.

In the current investigation, we used multiunit recording

techniques combined with cortical architecture to distinguish

area 2 from area 5L. Previous studies in our own and other

laboratories demonstrate that the thalamocortical and cortico-

cortical connections of area 5L versus area 2 are distinct as well

(see Padberg et al. 2009). While the architectonic and functional

distinction between area 2 and more medial portions of BA 5

(such as the presumptive MIP) are clear, the functional distinc-

tion between area 5L and the presumptive MIP are less distinct.

Although we consider these as separate fields, there are

several issues with subdividing areas of posterior parietal

cortex that make it difficult to draw firm conclusions about

these regions. First, as noted in the introduction, neurons in

area 5 respond optimally in awake animals, and electrophysi-

ological recording results are affected by the anesthetic state.

Because of this, it is not surprising that in the current study

45% of the recording sites in the IPS contain neurons that are

unresponsive to somatic or visual stimulation (Table 2). While

the architectonic appearance of the medial and lateral portions

of area 5 are distinct (Fig. 3B), the physiological distinctions

between these fields are less clear. Thus, an alternate

interpretation is that the medial and lateral portions of area 5

form one very large field that runs from the lateral tip of the IPS

to more medial portions of the IPS, adjacent to the PCS. This

larger area 5 would still possess a magnified representation of

the forelimb with many fractures in organization and rerepre-

sentations of similar hand and limb parts. Furthermore, this

single field would still appear to possess only a very small

representation of the hindlimb and trunk. One way to help

resolve the issue of whether 1 or 2 fields exist would be to

examine the cortical and thalamocortical connections of

medial and lateral portions of the rostral bank of the IPS, with

the expectation that if these are in fact separate areas, they

would have distinct patterns of connectivity. This study is

currently being conducted in our laboratory.

Regardless of our interpretation, the difference between

areas on the rostral bank of the IPS (5L + the presumptive MIP)

and area 2 are quite clear (Fig. 9). Furthermore, the caudal bank

of the IPS has been subdivided into multiple cortical areas

including AIP, LIP, VIP, and CIP, each associated with specific

actions such as grasping, saccade guidance, heading perception,

and 3D surface orientation (for review, see Tsutsui et al. 2005;

Britten 2008; Bisley and Goldberg 2010). Thus, the notion that

the very large BA 5 may be broken into separate fields including

an area 5L as well as more medial divisions is not surprising.

Location and Organization of Areas 2 and 5L in Macaque
Monkeys

The full topographic organization and receptive field character-

istics of neurons in area 2 have been described in detail for

macaque monkeys (e.g., Hyvärinen and Poranen 1978; Pons

et al. 1985a, 1985b; Taoka et al. 1998, 2000; for review, see

Iwamura et al. 2002) and cebus monkeys (Padberg et al. 2007).

As in anterior parietal fields 3a, 3b, and 1, area 2 has a parallel

representation with the leg and foot represented medially,

followed by the toes, hindlimb, and trunk representation just

rostral and caudal to the PCS (Fig. 9). The shoulder, wrist, digits,

and face are represented most laterally. Some neurons in area 2

respond to stimulation of cutaneous receptors but the majority

of neurons respond to stimulation of deep tissue (67%; Taoka

et al. 1998) or noncutaneous stimulation of varying types (57%;

Hyvärinen and Poranen 1978). Previous studies also found that

11--17% of neurons in area 2 had bilateral and ipsilateral

receptive fields (Taoka et al. 1998) with the highest proportion

(68%) located on the trunk. In the present study, the general

topographic representation, receptive field size and receptive

field configurations are similar to those reported previously by

Pons et al. (1985a, 1985b). Likewise, we found that the majority

(58%) of neurons in area 2 responded to stimulation of deep

receptors. Neurons at a few sites in area 2 responded to visual

stimulation. Although we did not find bilateral receptive fields

in area 2, this may be due to our anesthetized preparation

where callosal inputs to area 2 (and to area 5L) may have been

completely or partially inhibited. Our data for area 2 support

previous data on the organization of area 2 and demonstrate

that the functional boundary of area 2 matches the architec-

tonically defined border with area 5.

Unlike the parallel organization of body representations

found in anterior parietal fields, our recordings in IPS showed

a very different nonparallel organization with most of our

lateral and medial recordings sites containing neurons with

receptive fields on portions of the forelimb. Even if one were to

consider area 5L and the presumptive MIP as a single field, this

fractured organization with a magnified forelimb is still distinct.

In early electrophysiological recording studies in area 5 in

awake monkeys (for location of recordings, See Fig. 2), Duffy

and Burchfield (1971), Sakata et al. (1973), and Mountcastle

et al. (1975) (see Fig. 2A,B) report that receptive fields for

neurons in area 5 were larger than in S1 and that most neurons

(66--84%) responded to passive stimulation of deep tissue and

joint rotations. In some studies, many of neurons had bilateral

or ipsilateral receptive fields (42--52%; Duffy and Burchfield

1971; Sakata et al. 1973) and in other studies, most neurons had
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contralateral receptive fields with only a small percentage of

neurons (~8%) having bilateral or ipsilateral receptive fields

(Mountcastle et al. 1975). Finally, 11% of neurons were active

when the animal reached its arm or manipulated an object with

his hand (Mountcastle et al. 1975). Iwamura et al. (1994, 2002)

and Taoka et al. (1998, 2000) recorded from a similar location

in awake animals, but also recorded further medially, in and

around the postcentral sulcus (Fig. 2D,E,G). These investigators

described not only neurons associated with the forelimb in area

5 but were the first to describe neurons associated with the

hindlimb (Iwamura et al. 1994, 2002; Taoka et al. 1998, 2000)

and proposed a topographic organization of area 5 that mirrors

that of area 2. However, the hindlimb region of area 5 described

by these investigators was more medial and rostral than in

previous studies, in and immediately posterior to the PCS (Fig.

2E,G). This is the location of the hindlimb and trunk

representation described for area 2 by Pons et al. (1985a,

1985b) (Fig. 9). As in earlier studies, they found neurons

responsive mostly to stimulation of deep tissue and demon-

strate that about 20% of neurons had bilateral receptive fields,

with the majority located on the trunk (Taoka et al. 1998).

There are other studies that recorded from BA5 in awake

animals, but as in the studies described above, the location of

recording sites along the IPS varied (see Fig. 2), as did neural

response properties, indicating that BA5 is composed of several

different functional areas. For example, Snyder et al. (1997,

1998, 2000) found what they term a reach region, located in

a far medial location in the IPS, which is involved in the

generation of intended visually guided arm movements. This

portion of area 5 has subsequently been termed the parietal

reach region (PPR, see below). Other investigators have

explored a middle portion of BA5 on the rostral bank of the

IPS (e.g., Lacquaniti et al. 1995; Klam and Graf 2006; Fig. 2I).

While several investigators term this field MIP, others argue

that this is a portion of the PRR, which also includes other

functional zones (e.g., Cohen and Andersen 2002; Grefkes and

Fink 2005). Finally, Gardner, Babu, Ghosh, et al. (2007),

Gardner, Babu, Reitzen, et al. (2007), and Chen et al. (2009)

recorded from a very lateral portion of BA5 while monkeys

were performing a reach/grasp/lift task and found that neurons

appear to be involved in aspects of grasping an object.

Our results from neurons in the lateral portion of BA 5 (area

5L), including the preponderance of receptive fields on the

hand and forelimb, the submodality, and receptive field

laterality and configuration, are consistent with previous

studies where passive stimulation was applied in either awake

or anesthetized animals in a location similar to portions of area

5L (e.g., Sakata et al. 1973; Mountcastle et al. 1975; Pons et al.

1985a, 1985b). Although in one case, we observed 2 recording

sites with receptive fields on the hindlimb, the location of these

sites was in a medial portion of the IPS, in the presumptive area

MIP, rather than in and around the PCS in area 2, or laterally in

area 5L. Furthermore, our results from neurons recorded

within the presumptive MIP are similar to previous inves-

tigations in awake animals in which neurons in MIP responded

to passive somatic stimulation of the forelimb as well as visual

and sometimes bimodal stimulation (e.g., Colby and Duhamel

1991, 1996). However, it should be noted that as in area 5L,

responsiveness of neurons in this medial region to both visual

and somatic stimulation can be affected by anesthetic state.

The differences between studies in which different locations

within BA5 were explored indicate that BA5 consists of

multiple functional fields involved in different aspects of

intended manual behavior. Thus, it seems critical that the

terminology regarding BA5 be altered to more appropriately

reflect which portion of this large architectonic zone is being

studied.

Area 5 in New World Monkeys

Full maps of area 5 have been described for New World titi

(Padberg et al. 2005) and cebus monkeys (Padberg et al. 2007)

and there are both common features of organization as well as

differences between these primates andmacaques. Area 5 in titis

is located in the lateral portion of the IPS and contains neurons

that respond mostly to stimulation of muscles and joints, but

a subset of neurons respond to cutaneous stimulation. Like

macaque monkeys, neurons in this region have large and

complex receptive fields, and the representation is dominated

by the hand and shoulder, although a small representation of the

face was identified in one case. In titi monkeys, as in macaque

monkeys, there is a gross topographic organization of the

forelimb representation from proximal to distal and frommedial

to lateral. Furthermore, in titi monkeys, multiple representations

of the same body parts are observed, resulting in a fractured map

of area 5. On the other hand, compared with the macaque

monkey, in titi monkeys relatively more neurons in area 5

respond to visual stimulation, and parietal cortex in general

appears to be more primitive, with area 5 located immediately

caudal to area 1 and no area 2 appears to be present (Padberg

et al. 2005).

Although cebus monkeys are more closely related to titi

monkeys than macaque monkeys, the organization, location, and

extent of the area 5 identified in cebus looks more like that of

the macaque than titi monkeys (Padberg et al. 2007), possibly

due to the independent evolution of an opposable thumb and

precision grip. As in macaque monkeys, in cebus monkeys area 5

is located immediately caudal to area 2, there is an enormous

magnification of the forelimb, little or no responsiveness to

visual stimulation, and neurons have multiple body part re-

ceptive fields as well as multiple representations of the same

body part leading to fractured maps. However, in cebus

monkeys, more neurons are responsive to cutaneous stimula-

tion. Interestingly, in all 3 of these nonhuman primate species,

there were greater individual differences in map organization in

area 5 than in areas 2 and 1. Thus, in nonhuman primates, overall

organizational features of area 5 appear to be similar across

species, with some species-specific distinctions.

Function of Area 5L and Cortex Medial to Area 5

One of the most important features of area 5 described in early

studies in awake animals was that most neurons were active

when the animal actively rotated a joint and that some of the

neurons, termed arm projection and hand manipulation

neurons (Mountcastle et al. 1975) were active when the animal

reaches its arm or manipulates an object with its hand.

Mountcastle proposed that these conditional neurons provided

commands for movement rather than actual instructions of

how to move. Subsequent single unit recording studies in

awake animals (Kalaska et al. 1990) report that neurons in area

5 were unaffected by the load conditions of a task and like

Mountcastle et al. (1975) concluded that area 5 neurons

encode invariant spatial parameters of a movement or

movement directions. They also proposed that neurons in this

Cerebral Cortex August 2012, V 22 N 8 1847

 at U
niversity of C

alifornia, D
avis on D

ecem
ber 14, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


region provide a context or a point of reference for an arm

movement.

More recent studies indicate that area 5L neurons are

involved in coordinating or programming intention of move-

ment (Debowy et al. 2001) and in the kinematics of acquisition

(e.g., spatiotemporal coordinates) rather than the kinetics (e.g.,

load and force of muscle) of reaching (Kalaska 1996; Wise et al.

1997). Studies that examine the activity of neurons in 5L during

the performance of a reach-grasp-lift task indicate that these

neurons fire maximally before the object is contacted and

decline after the object is acquired (Gardner, Babu, Reitzen, et al.

2007). Interestingly, these investigators reported that a large

proportion of neurons encountered in area 5L increased their

rate of firing as the fingers were preshaped just before grasping,

a property also associated with the anterior intraparietal area

(AIP). In a companion study (Gardner, Babu, Ghosh, et al. 2007),

these investigators demonstrated that object size and hand

posture affected firing rates of neurons in area 5L and that

neurons in area 5L fired before those in anterior parietal fields

(including area 2), which were most active during object

contact or grasping of the object (Gardner, Ro, et al. 2007). They

propose that neurons in area 5L coordinate reaching and

grasping actions as the hand arrives at a target and that neurons

in area 5L are involved in both the planning and the execution of

a movement (Gardner, Babu, Reitzen, et al. 2007). Recently, they

demonstrated that most neurons in the rostral portion of area 5L

modulate their firing rate based on the approach style and that

there was a strong correlation between approach style and

object properties such as size and shape (Chen et al. 2009), thus

coordinating the arm and hand for reaching and grasping.

The terminology used to define cortex medial to area 5L

differs in that some studies refer to this as area 5 (e.g., Ferraina

and Bianchi 1994; Lacquaniti et al. 1995), some term this the

parietal reach region (PRR; e.g., Calton et al. 2002; Scherberger

et al. 2003; Chang et al. 2008), some studies refer to this general

region as the medial intraparietal area (MIP; e.g., Colby and

Duhamel 1991, 1996; Eskandar and Assad 2002; Mullette-

Gillman et al. 2005, Fig. 2; Klam and Graf 2006; Durand et al.

2007; Compare Fig. 1 of Scherberger et al. 2003 with Fig. 1 of

Klam and Graf 2006; Fig. 12), and some studies distinguish area

5 and MIP as separate fields rather than incorporating MIP into

the larger architectonic zone of BA5 (e.g., Johnson et al. 1996).

Because of these issues, making comparisons across studies,

including the present one, is problematic.

Not surprisingly, differences in terminology and location of

recording in medial portions of the IPS have led to differences

in what is considered to be the function of this region. For

example, some studies suggest that neurons in this region

(termed PRR) are involved in planning contralateral limb

movements and transforming visual information regarding

target location into a plan for visually guided reaching (Cohen

and Andersen 2002; Chang et al. 2008; Chang and Snyder 2010).

Some studies indicate that neurons in a similar location, but

termed MIP, are responsive to vestibular stimulation (passive

head rotations) and that these neurons discriminate active

versus passive head movement, are involved in self-motion

perception and coordination of movements in space and time

(Klam and Graf 2006). Other studies demonstrate that neurons

in this medial region are directionally selective to hand

movement and integrate hand-related directional information

with goal related information (Eskandar and Assad 2002), quite

similar to the recent proposition of Chang et al. (2008) for

neurons in PRR. Finally, some studies propose that this region

(area 5) is generating body or shoulder-centered (rather than

eye-centered) coordinates for reaching (Ferraina and Bianchi

1994; Lacquaniti et al. 1995).

While there are differences in the proposed function of

portions of architectonically defined area 5, most studies

implicate the medial portion of the IPS in translating and

combining multiple frames of reference (gaze centered, body

centered, head centered) into a common coordinate system

or integrated plan for reaching toward an intended target in

immediate extra personal space (Buneo et al. 2002). The

lateral portion of the IPS, area 5L, appears to be involved in the

kinematics of reaching, coordinating multiple limb parts for

reaching and grasping actions, and matching object proper-

ties, such as size and shape, with grasping configurations. Our

data support these findings by demonstrating a preponderance

of contralateral receptive fields in area 5L, a large magnifica-

tion of the forelimb, complex multi joint receptive fields, and

a fractured map of body parts that constitutes related

groups of proprioceptors activated during behaviorally rele-

vant movements.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
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